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This paper presents a statistical and topological study of a complex turbulent flow over 
a backward-facing step by means of direct and large-eddy simulations. Direct 
simulations are first performed for an isothermal two-dimensional case. In this case, 
shedding of coherent vortices in the mixing layer is demonstrated. Both direct and 
large-eddy simulations are then carried out in three dimensions. The subgrid-scale 
model used is the structure-function model proposed by MCtais & Lesieur (1992). Low- 
step computations corresponding to the geometry of Eaton & Johnston's (1980) 
laboratory experiment give turbulence statistics in better agreement with the 
experimental data than both Smagorinsky's method and K -  E modelling. Furthermore, 
calculations for a high step show that the eddy structure of the flow presents striking 
analogies with forced plane mixing layers : large billows are shed behind the step with 
intense longitudinal vortices strained between them. 

1. Introduction 
For many years, turbulence in fluids has been the object of uninterrupted efforts 

aimed at unveiling the mystery of its dynamics. An important idea which has recently 
emerged is the concept of coherent vortices, corresponding to local vorticity 
concentration of lifetime much longer than its turnover time. This concept is linked to 
important improvements in visualization techniques, both in laboratory and numerical 
experiments. 

These coherent structures play an important role in numerous technological 
applications : thermohydraulics in nuclear reactors, environmental studies, acoustics, 
vibrations, aerodynamics, combustion, etc. In each of these fields, it is necessary to 
understand the dynamics of these organized motions so as to mechanically control 
their production or suppression. 

In high-Reynolds-number mixing layers, Kelvin-Helmholtz coherent vortices were 
identified by Brown & Roshko (1974). More recent laboratory experiments 
(Breidenthall981; Bernal & Roshko 1986; Lasheras & Choi 1988), have indicated that 
mixing layers exhibit a three-dimensional character, for instance in the form of thin 
hairpin vortex filaments which are strained between the quasi-two-dimensional large 
vortices. The same vortices have been found in the computations carried out by 
Metcalfe et al. (1987). 

Although the numerical simulation of coherent structures has greatly improved, it is 
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FIGURE 1. Computational domain, geometric characteristics and inlet boundary conditions : (a) 
velocity profile; (b) temperature profile. 

still compulsory, at high Reynolds number, to model the subgrid scales : this is the large- 
eddy simulation approach proposed by Smagorinsky (1963), Lilly (1 967) and Deardorff 
(1970). The large-eddy simulation approach has been used in various domains of 
turbulence such as three-dimensional isotropic turbulence decay (Lesieur & Rogallo 
1989), the turbulent channel (Moin & Kim 1982), and the compressible boundary layer 
at high Mach number (Normand & Lesieur, 1992). The results obtained were 
encouraging enough to justify the present study dealing with the incompressible flow 
over a backward-facing step in a plane channel (see figure 1 a). Although the geometry 
remains simple, some features of complex turbulent shear flows such as separation, 
curvature, re-circulation and re-attachment are present. 

Other numerical studies dealing with separated flows in various geometries have 
been performed (see e.g. Arnal & Friedrich 1993, for the backward-facing step; Werner 
& Wengle 1993, for the flow over and around a cube). In the present paper, particular 
attention is given to the detailed investigation of the flow structures, while also 
considering flow statistics. The paper is organized as follows : governing equations and 
numerical methods are presented in $2. This section presents in particular the various 
boundary conditions and flow geometries that have been considered in the numerical 
experiments. The analysis of the organized vortex structures encountered in both two- 
and three-dimensional simulations is performed in $3.  Section 4 focuses on the 
statistical properties of the turbulent field. In this section, we consider a flow geometry 
close to Eaton & Johnston’s (1980) laboratory experiment, and compare the 
numerical results to the available experimental ones. 

2. Numerical methods and flow configuration 
2.1. Governing equations 

In a large-eddy simulation, each variablefis decomposed into two parts: one related 
to the large-scale field, JrT and the other related to the subgrid-scale field, f’, i.e. 

f =f+f/. (2.1) 
Following Leomard (1974), the large-scale field is defined with the aid of the filter G :  

f(x) = JD G(x - x’)f(x’) dx’, 
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where D is the integration control domain. In our study, G is the classical boxfilter used 
by Deardorff (1970) and by Clark, Ferziger & Reynolds (1 979) : 

where i = 1,2,3 and d is the characteristic filter length. For the finite-volume 
discretization method used in this study, 

where Axi is the computational mesh size in the i-direction; the indices i = 1,2,3 refer 
respectively to the streamwise, normal and spanwise direction. The filtering and 
partial-differentiation operators obey the commutative property : 

Now, we apply the filter G to the incompressible Navier-Stokes equation, which gives 

aii, a 1 ap a 
-+-(iiiiuj) = ---+-[2vs, ,+7,-L .13 -C..] w ’ 
at axj P O  axi axj 

= 0, 
aii. 
ax, 

where L,, are the Leonard stresses, C,  the cross-stresses, T ~ ,  the subgrid Reynolds 
stresses and Si, the strain rate of the filtered velocity field: 

While rii and Cii must be modelled, L,  can either be modelled or directly computed, 
as will be seen later. The subgrid Reynolds stresses 7ij are evaluated through the 
structure function model (MCtais & Lesieur 1992) presented below. We will show later 
that C,  and L,  may be neglected. 

2.2. Structure-function subgrid model 

where K, is the subgrid kinetic energy. In the spectral eddy viscosity approach for 
isotropic turbulence, a cutoff wavenumber in Fourier space k, = K / A  is defined. Let 
E(kJ be the kinetic energy spectrum. An ‘a la mixing length’ argument gives 

vt - k i 1 ~ ( k c )  - kil[k, E(k,)]$ = C[E(k,)/k,];, (2.9) 
where v(kJ is the characteristic turbulent velocity in the subgrid scales. C is a constant 
to be determined. Non-local expansions based upon the EDQNM theory, plus the 
assumption of a k-g spectrum for k > k,, yield for k % k, (Lesieur 1990) : C = 0.44Cii, 
where C, is the Kolmogorov constant. In fact, this eddy-viscosity evaluation is no 
longer valid close to k,  due to the existence of a cusp (Kraichnan 1976). A simpler 
approach consists in the ‘averaged spectral eddy viscosity’ (without cusp), where C is 
evaluated using kinetic-energy conservation arguments, which yields C = iC;i. 
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In the structure-function model, one works in physical space : the averaged spectral 
eddy viscosity is evaluated with the aid of a local kinetic-energy spectrum EJk,). The 
latter is calculated in terms of the local second-order velocity structure function 

&(x,d , t )  = ( I IU(X, t ) -U(X+r , t ) ( (2 ) l i r l I=A (2.10) 

(2.1 1) 

using the ‘ Batchelor-Orszag formula’ 

&(x, A ,  t )  = 4.82CK(sA)!, E,(k,) = C, &(7t/A)-g, 

which yields (2.12) 

Expressing the structure function of the filtered field, E, in terms, of the structure 
function of the instantaneous field, one finally obtains (see Mttais & Lesieur 1992 for 
details) 

v,(x, A ,  t )  = 0.104GiA[E(~, A ,  t)$. (2.13) 
It is this expression that will be used as a subgrid-scale model in the remainder of the 
present study. 

For isotropic turbulence where spatial intermittency exists, this model gives kinetic 
energy spectra in better agreement with Kolmogorov’s law than models such as 
Smagorinsky’s. It can also be used for inhomogeneous flows, where the small scales are 
not too far from isotropy, while the large-scale inhomogeneities are directly taken into 
account by the simulation. In practical cases, and for a regular cubic mesh, the local 
structure function is obtained from an arithmetic average of the contributions coming 
from the six closest surrounding points, distributed in the three spatial directions. 

The subgrid kinetic energy K, appearing in (2.8) is defined by 

(2.14) 

which turns out to be K8(x, A ,  t )  = 0.37&~, A ,  t).  (2.15) 
The problem can also be envisaged by incorporating the subgrid kinetic energy into the 
pressure term, as in Mttais & Lesieur (1992). We have performed calculations with 
both methods, without any difference in the results. 

As previously noted, the Leonard stresses L, and the cross-stresses C, can also be 
modelled. Clark et al. (1979) determine these quantities through a Taylor series 
expansion of zs,isI about the centre of the control volume surrounding x. Following this 
idea, Findikakis & Street (1979) demonstrate that L, + C, can be approximated by 

(2.16) 

where I = 1,2,3. 
We will use this expression to calculate L , +  C, and compare it with the subgrid 

Reynolds stresses, the velocity derivatives being taken from the present large-eddy 
simulation. Therefore, the following quantities are defined 

DR = -9 DL = l v * ( L i j +  cij>II, DM = Ilv.(2YSzr>lr, (2.17) 
the overbar denoting a temporal mean. The results are shown on figure 2, where the 
maxima of DR, I), and D ,  are displayed as a function of the axial position x / H .  DR 
is greater than D, and D, by a factor of more than 40. Thus, the Leonard stresses and 
the cross-stresses may be neglected in our calculations. This result corroborates the 
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FIGURE 2. Distribution of diffusion maxima (in each vertical section) : subgrid Reynolds diffusion, 
D,  (solid line); Leonard diffusion, D, (dashed line) and molecular diffusion, D, (dotted line). 

findings of Antonopoulos-Domis (198 1) who also use finite-volume discretization 
techniques. Finally, the transport equations, including an equation for a passive 
temperature, take the following form : 

(2.18) 

(2.19) 

(2.20) 

- 
where rjT = -u; T’ is the temperature turbulent flux. It is modelled as 

7jT = K@T/axj), (2.21) 

with a turbulent Prandtl number v ~ / K ~  = 0.6 (see Herring et al. 1982; Lesieur 1990). 

2.3. Numerical algorithm 
The filtered equations (2.18)-(2.20) are solved using the TRIO code, developed by Grand 
et al. (1988). The finite-volume version of this code is used. Pressure and velocity 
components are defined on different nodes of a staggered grid. The time discretization 
is a forward-marching procedure. The continuity equation, the pressure term in the 
momentum equation and the boundary conditions are evaluated at the new time step, 
whereas the other terms of the momentum equation are evaluated at the old time step. 
The CFL number 

is kept below 0.5 to ensure time-accurate integration. 
The discrete form of (2.18) and (2.20) leads to a linear algebraic system. Taking the 

divergence allows the unknown velocities to be eliminated. The new equation is similar 
to a discrete form of a Poisson equation for the pressure. This algorithm was originally 
proposed by Hirt, Nichols & Romero (1975) and is known as the SOLA method. We 
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Resolution Aspect ratio Reynolds Turbulence 
Run Classification (x x y x z) R = W / H  number model 

2DEUa 
2DEUb 
2DKEP 
3DEUa 
3DEUb 
3DFSa 
3DFSb 
3DFSc 

3DSMA 

2D 
2D 
2D 
3D 
3D 
3D 
3D 
3D 
3D 

320 x 40 
320 x 80 
240 x 20 
130 x 25 x 40 
90 x 16 x 16 

130 x 25 x 40 
90 x 16 x 16 

200 x 30 x 30 
90 x 16 x 16 

1.25 
2.5 
2.5 
1.25 
2.5 
1.25 
2.5 
2.5 
2.5 

6000 
38 000 
38 000 
6 000 

38000 
6 000 

38000 
38000 
38000 

No model 
No model 

K.5 
No model 
No model 

Struc. function 
Struc. function 
Struc. function 
Smagorinsky 

TABLE 1. Classification of the numerical experiments : geometry, resolution, two- (2D) or three- 
dimensional (3D) and Reynolds number. The Reynolds number is defined as Re, = U, H / v ;  H and 
Ware shown in figure 1. 

introduced two main differences with respect to the SOLA method: (a)  the Poisson 
equation is solved with a direct method, (b) the discrete form of the convective terms 
is derived from a third-order approximation, the SMART scheme (Gaskell & Lau 1988). 
A third-order convective transport scheme is necessary in order to avoid excessive 
numerical diffusion. 

Having defined the various parameters of the calculation, we will now validate the 
numerical method in the two-dimensional laminar flow regime. 

2.4. Flow configuration and boundary conditions 
As shown on figure 1, Hand Ware respectively the step and channel heights, the aspect 
ratio being defined as W / H .  We define what we call the ‘low-step’ and ‘high-step’ 
cases: the low step has an aspect ratio of 2.5 and corresponds to the same step geometry 
as in the laboratory experiments by Eaton & Johnston (1980). In the high-step case, the 
aspect ratio is 1.25. 

2.4.1. Inflow 
To limit the number of computational grid points, the inlet channel is not simulated 

and the intlow conditions are imposed at the step ridge: the flow consists of a mean 
velocity field U(y)  on which is superimposed a white noise of amplitude 

max (U(y)). The noise intensity is slightly lower than the free-stream turbulence 
level upstream of the step measured in Eaton & Johnston’s (1980) experiment (between 
0.3 and 0.4 % at x / H  = - 1.5). 

For the low-step configuration, U(y)  corresponds to the profile given by Eaton & 
Johnston (1980, p. 159) in their high-Reynolds-number case. U,, deriotes the inlet 
velocity outside the boundary layer. In our numerical runs of this low-step case, the 
Reynolds number Re, based upon U,, H and the molecular viscosity is 38000. The 
corresponding momentum-thickness-based Reynolds number Re, of the separating 
boundary layer is 852. The run parameters are shown in table 1. U(y)  will be taken 
uniform (= U,) in the high-step case. In that case, Re, = 6000. 

The white noise roughly models the residual turbulence within the upstream flow. In 
our calculations, in fact, the backward-facing step flow is always unstable, even 
without the inlet perturbation. Similar behaviour was obtained in two-dimensional 
numerical simulations of the spatial mixing layer by Buell & Huerre (1988). Since these 
mixing layers are convectively unstable, it is the outflow boundary condition (see 
below) that forces pressure perturbations upstream. Therefore, our calculations might 
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be more of the forced-transition than the natural-transition type. Previous numerical 
studies have shown that the flow characteristics are very sensitive to small changes in 
the inlet conditions (e.g. Kaiktsis, Karniadakis & Orszag 1991). However, the work of 
Arnal & Friedrich (1993) has demonstrated the difficulty in precisely matching 
experimental inflow conditions such as turbulence intensities. In order to minimize the 
number of discretization points devoted to the inlet channel, we have therefore chosen 
the synthetic inflow boundary conditions described above: in the downstream flow near 
the step, these allow a realistic mean flow field to be reproduced (figure 18), when the 
turbulent intensity is slightly underpredicted as compared to Eaton & Johnston’s 
(1980) data (figure 21). 

(‘cold fluid’) 
and (‘hot fluid’) are imposed respectively at 15 YO and 85 YO of the inlet channel, as 
illustrated by figure 1 (b). For the three-dimensional experiments, this condition is 
taken uniform in the spanwise direction. 

2.4.2. OutJlow 
At the outlet, the longitudinal velocity gradients are taken equal to zero, and a 

hydrostatic pressure distribution is assumed. This outflow boundary condition requires 
that the flow must be completely developed. In order to ensure this condition, the 
outlet of the channel is placed far from the region of interest ( x / H  > 12) with the aid 
of an expanding mesh. In most of the cases, we took X,,,/H x 30, where X,,, is the 
total length of the channel. 

2.4.3. Upper and lower boundaries 
The boundary condition at the solid walls poses serious problems: the no-slip 

condition is the most natural choice, but it requires a very fine mesh near the wall. For 
instance, Piomelli (1988) uses t of the total grid points to simulate the wall region of 
a channel flow. In our study, since we focus on the detailed analysis of the turbulent 
structures present in the whole flow, including those within the shear layer behind the 
step, the mesh points have to be distributed more uniformly across the height of the 
channel. Therefore, the first mesh point cannot be set near the wall in the viscous 
sublayer, where the exact form of the no-slip condition can be written. Instead, the first 
mesh point is located in the turbulent part of the boundary layer. The total shear stress 
is assumed constant across the interval between the wall and the first mesh point and 
equal to the wall shear stress. The evaluation of the wall shear stress is based upon the 
assumption of a logarithmic velocity profile in the inertial part of the turbulent 
boundary layer. We use the conventional logarithmic law: 

The inlet boundary condition for the passive temperature is such that 

(2.22) 

where K is the von Karmhn constant ( K  = 0.4). As shown by Ciofalo & Collins (1989), 
this assumption is partially invalidated in the recirculation region and just downstream 
of the reattachment zone: the velocity profile follows a logarithmic law with the same 
slope but a different magnitude than in the turbulent boundary layer with no pressure 
gradient. For simplicity, the logarithmic velocity profile along a flat plate is used 
hereafter in the evaluation of the wall shear stress. We believe that this does not 
introduce a significant error in the development of the turbulent flow in the mixing 
layer and in the recirculation region away from the immediate vicinity of the wall: 
indeed, this flow is largely controlled by inflexional instabilities behind the step. This 
boundary condition can be considered as an intermediate between no-slip and free-slip 
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conditions. Numerical constraints prevent the exact prescription of the former, while 
the latter may lead to artificial pressure and vorticity sheets near the wall. The 
following results should be validated with respect to new experiments, and higher- 
resolution calculations when computers will permit. Note that the same doubts as for 
the logarithmic condition may be brought to the role of the outflow boundary 
condition, which forces the flow as already stressed. Note finally that experiments are 
not free of unwanted forcing, due for instance to a feedback between outgoing vortices 
and upstream perturbations. 

2.4.4. Lateral boundaries 
Recent large-eddy simulation computations by Arnal & Friedrich (1993) have 

demonstrated an influence of the channel width on the flow statistics, when periodic 
boundary conditions are used in the span. However, they have also shown that 
incomplete grid resolution in the simulations can lead to large discrepancies between 
experimental and numerical studies. The available computer resources oblige us to find 
a compromise between large spanwise extent and fine grid resolution: here, we have 
chosen to limit the channel width. In the low-step case, we take the spanwise extent of 
the computational domain L, equal to the channel height W (see figure 1 a):  this 
corresponds to about f of the corresponding length of Eaton & Johnston's (1980) 
experiment. Therefore, in order to reduce the perturbation caused by this limited 
extent, a free-slip and impermeability condition is imposed such that au/az = 0, 
av/& = 0 and w = 0 on the lateral planes. The good agreement for the re-attachment 
length between the experimental data and the numerical predictions with the fine mesh 
(see $4.2) seems to justify this choice. For the high-step case we take L, = 2W, and a 
periodic boundary condition is used. Here, we focus on the topology of the flow and 
in particular on its spanwise pattern. The results presented in $3.2 show that the 
wavelength of this pattern is substantially smaller than the spanwise size of the 
computational domain, indicating that the flow structure is not affected by the periodic 
domain. Our approach is somewhat similar to the one initiated by Jimenez & Moin 
(1991) in their minimal channel study: it consists of studying in detail the morphology 
of the flow structures that contribute the most to the turbulent flow dynamics. 

2.5. Validation of the numerical method 
In order to validate the method, it is of interest to evaluate, in the two-dimensional 
laminar flow regime, the Reynolds-number dependence of the re-attachment length, 
for which several experimental and numerical results exist. In figure 3, we present the 
numerical results of two-dimensional calculations performed with the TRIO code : we 
have chosen a flow geometry with an expansion ratio W / H =  1.94 (see figure 1) 
corresponding to the laboratory experiment of Armaly et al. (1983) (resolution 
100 x 40). We find a very good agreement with the recent numerical works of Kaiktsis 
et al. (1991). The computed length compares very well with the experimental data at 
small Reynolds number. However, whatever the numerical approach followed, the re- 
circulation length is underestimated above Reynolds numbers Re w 500: this is the 
threshold above which the experimental flow becomes three-dimensional in the region 
downstream of the step. 

2.6. Description of the numerical runs 
We have carried out two- and three-dimensional calculations corresponding to the low- 
and high-step cases. Some were performed without any subgrid-scale model: these 
computations are not direct numerical simulations, in the sense that numerical 
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FIGURE 5. Unsteady two-dimensional flow; low-step case (run 2DEUb): (a) Spanwise vorticity field wz (red: 
o,> 0 and blue: w,< 0); (b) pressure field (blue and light colours: low-pressure centres; dark colours: high- 
pressure centres). t=200H/Uo. 

FIGURE 6. Unsteady flow downstream of the backward-facing step at t=140H/Uo; purple: spanwise vorticity, 
wZ=2.0U~H, yellow: streamwise vorticity ox =+0.8UdH, green: streamwise vorticity w,=-O.IUdH, Euler 
simulation (run 3DEUu). 

SILVEIRA  NET^ ET AL. 
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FIGURE 7. Unsteady three-dimensional flow; high-step case (run 3DFsa): (a) t=l30H/Uo; light blue: vorticity 
modulus Ilgll=1.8&/& yellow: streamwise vorticity wx=+0.8U& green: streamwise vorticity wx= 
-0.8UO/H, (b) t=138H/Uo; (c) cross-section in the (y,z)-plane, between the second and the third spanwise 
vortices in (b); view of the streamwise counter-rotating vortices. 

SILVEIRA NEIO ET AL 
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FIGURE 10. Unsteady three-dimensional flow; low-step case (run ~DFSC, ) ;  t=90H/Uo; (a), (b) light blue: 
vorticity modulus llWll=3.5Uo/M, dark blue: streamwise vorticity wx=+2.5U0/H, green: wX=-2.5Uo/H; 
(c) top view of the isobar pf=-0.3poU& 

SILVEIRA  NET^ ET AL 
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FIGURE 3. Re-attachment length normalized by the step height versus Reynolds number for Armaly 
et al.’s experiment (+) and two-dimensional (laminar) simulations of Kaiktsis et al. (M) and using 
TRIO W). 

viscosity damps to some extent the cascade of energy fluctuations towards the smallest 
resolved scales. It is more of the type of an ‘Euler computation’, following a 
terminology used in computational aerodynamics. 

The run characteristics are summarized in table 1. In the low-step case, we first 
carried out a two-dimensional Euler computation (run 2DEUb). This was then 
completed by a two-dimensional K--E modelling calculation (run 2DKEP). In three 
dimensions, we first ran a low-resolution Euler computation (run 3DEUb). The other 
three-dimensional calculations corresponding to this geometry were large-eddy 
simulations: at low resolution, two subgrid-scale models were considered - the 
structure-function model (run 3DFSb) and Smagorinsky’s model (run 3DSMA). 
Finally, the study was completed with a high-resolution simulation with the structure- 
function model (run 3DFSc). 

Similarly, we first performed an Euler computation in the high-step case, both in two 
(run 2DEUa) and three dimensions (high resolution, run 3DEUa). For this case, we 
performed only one large-eddy simulation with the structure-function model (high 
resolution, run 3DFSa). 

3. Flow structures 
3.1. Two-dimensional simulations 

We start with run 2DEUa (high step, no model). Figure 4(a) (plate 1) shows a temporal 
evolution of the flow, visualized with the aid of isovorticity contours. The flow 
dynamics in this case is very similar to the free mixing layer. Kelvin-Helmholtz eddies 
are clearly shed behind the step, and pair, as in Winant & Browand‘s (1974) 
experiment. 

The diffusion of a passive temperature is also simulated, at a molecular Prandtl 
number of 1. It is used as a numerical dye. The upstream profile (a step) is described 
above and shown on figure I@). Figure 4(b) (plate 1) illustrates the mixing of the 

2 ELM 256 
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temperature field corresponding to figure 4(a). Red and blue colours represent 
respectively and T,. In fact, our visualization compares very well with the back-step 
experiment of Gharib & Derango (1989), performed on a two-dimensional liquid film. 

In the low-step case (run 2DEUb), vorticity and pressure plots shown on figure 5 
(plate 2) indicate again the presence of a mixing layer behind the step. The re- 
attachment length xR is found to be equal to 6.8H (temporal mean), against 7.8H as 
measured by Eaton & Johnston (1980). In the computation, the eddies which impinge 
on the lower wall, and are transported downstream, are shed with a frequency f 
corresponding to a Strouhal number S = f H / U ,  w 0.09. This is in good agreement 
with Eaton & Johnston’s (1980) experiment, S M 0.07. 

An interesting phenomenon in this low-step case is the separation of the boundary 
layer from the upper wall: it generates a second street of coherent vortices which are 
transported toward the outlet of the channel with a Strouhal number S w 0.07. Armaly 
et al. (1983) have also shown, in their laboratory experiment, that separation could 
occur on the opposite wall of a sudden expansion. 

The pressure charts of figure 5,  taken at t = 200H/ U,, show depressions (blue, white 
and yellow) corresponding to the coherent vortices, and high-pressure regions (dark) 
in between. We also see that the bottom separated shear layer curves sharply 
downward in the re-attachment zone and impinges on the wall. The shear layer is 
subjected to the effects of stabilizing curvature, adverse pressure gradient (as shown on 
figure 5b) and strong interaction with the wall in this region. These mechanisms cause 
a rapid decay of the turbulent kinetic energy and Reynolds stresses in the re- 
attachment zone, as will be shown later in the section on turbulence statistics. 

A more general two-dimensional numerical simulation of the backward-facing step, 
including the effect of a stable stratification on the mixing layer, is presented in Silveira 
Neto, Grand & Lesieur (1991). In the stratified experiment, it was confirmed that the 
stable stratification inhibits the growth of vortices at a local Richardson number of the 
order of 0.25. At a high Richardson number, internal gravity waves form. 

3.2.  Three-dimensional simulations 
In the mixing-layer experiments of Breidenthal (1981), Bernal & Roshko (1986) and 
Lasheras & Choi (1988), it was shown that secondary hairpin vortices were stretched 
between the primary Kelvin-Helmholtz rolls. As far as the statistical measurements are 
concerned (spreading rate, kinetic energy, Reynolds stresses, etc.), the laboratory 
experiments behind a step of infinite height carried out by Wygnanski & Fiedler (1970) 
have shown a very good agreement with experiments downstream of a splitter plate. 
Here we will study, both from a structural and a statistical point of view, the cases of 
both a high step and a low step, in order to examine the influence of the step height 
and the lateral walls upon the three-dimensional mixing-layer dynamics. The present 
section focuses on the flow topology; statistics are presented in the next section. 

3.2.1. High step 
We first carried out an Euler calculation in the high-step case (run 3DEUa). The 

corresponding vorticity field is shown on figure 6 (plate 2). It shows quasi-two- 
dimensional rolls shed behind the step, and longitudinal vortices of alternate sign 
stretched by the flow. These vortices seem to merge downstream, where the primary 
vortices pair. 

The three-dimensional large-eddy simulations using the structure-function model 
((2.8), (2.13) and (2.15)) are now looked at. The numerical experiments performed are 
described in table 1 (runs 3DFSa and 3DFSc). 



Coherent vortices behind a backward-facing step 11 

FIGURE 8. Same simulation as in figure 7(b) :  (a) pressure fluctuations: p’ = - 0 . 1 ~ ~  U: and 
- 0 . 0 5 ~ ~  U:  (light grey), p’ = 0 . 0 5 ~ ~  U: and 0 . 1 ~ ~  U :  (dark grey and white); (b) vorticity field: cross- 
section in a (y,z)-plane between the fourth and the fifth transverse vortices in figure 7(b) ,  showing 
a quasi-two-dimensional primary vortex (light grey: spanwise vorticity ; dark and white: longitudinal 
vorticity). 

Figures 7(a) and 7(b )  (plate 3 )  show the vorticity field related to the higher-step 
experiment (3DFSa) at t = 130H/U0 and 138H/ U, respectively. The perspective views 
show vorticitymodulus 1 1 0 1 1  = 1.8U0/H(blue) andstreamwisevorticityo, = k0.8U0/H 
(yellow and green respectively). Several primary quasi-two-dimensional spanwise 
vortices (blue) are convected downstream. The quasi-two-dimensionality of these 
vortices is obvious. Figure 8 (a) illustrates the pressure fluctuationp’ = - 0. lp, U: (low- 
pressure centres) while figure 8 (b) displays the vorticity field through a cross-section in 
the (y,z)-plane between the fourth and fifth spanwise vortices of figure 7(b) .  The 
spanwise vorticity is shown in light grey while dark and white correspond to isosurfaces 
of streamwise vorticity of a different sign. 

Figure 7 (a) shows a quasi-two-dimensional pairing (localized downstream of the 
second spanwise vortex), which is terminated at the time corresponding to figure 7 (b). 
Streamwise vortices are stretched between the primary spanwise vortices (figures 7 a  
and 7 b) and are intensified as time goes on. During the pairing their spanwise period 

2-2 
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FIGURE 9. Same simulation as in figure 7(b)  : cross-section in a ( y ,  2)-plane; projection of the 
large-scale velocity field (u, w), showing mushroom-shaped structures. 

doubles as in Huang & Ho’s (1990) experiment. Figure 7(c) (plate 3) shows a vertical 
cross-section in the ( y ,  z)-plane of the longitudinal vortices through the braid upstream 
of the pairing vortices (same field as figure 7b) .  This figure clearly shows the hairpin 
counter-rotating vortices (streamwise vorticity ; yellow: w, = + 0.8 U , / H  and white : 
w, = -0.8Uo/H). In this case w, u 40 YO w,. Figure 9 displays the velocity field in the 
same vertical cross-section presented above. The mushroom-shaped structure of figure 
7(c) is reminiscent of the mixing-layer laboratory experiments (Bernal & Roshko 1986 
and Lasheras & Choi 1988) and direct numerical simulations (Metcalfe et al. 1987). 

The pairing and the hairpin vortices play an important role in the transition process 
toward three-dimensionality. Indeed, the hairpin vortices become part of the core of 
the spanwise vortex resulting from the pairing of two Kelvin-Helmholtz rolls. As 
observed by Bernal & Roshko (1986), these secondary instabilities (hairpin vortices) 
generate the three-dimensionality , while the pairing redistributes it. This is at the origin 
of the Kolmogorov energy cascade toward three-dimensional small scales, which we 
have measured and which will be presented below. 

The streamwise hairpin vortices exhibited above are certainly due to the straining 
between the large spanwise rollers of quasi-two-dimensional vortex filaments initially 
located in the stagnation region. However, numerical simulations of a temporal mixing 
layer forced initially by a small-three-dimensional white-noise forcing have displayed 
a staggered mode of the ‘helical-pairing type’ (Comte, Lesieur & Lamballais 1992). 
The latter was predicted theoretically by Pierrehumbert & Widnall(l982) on the basis 
of a secondary instability analysis of the Stuart vortices. What we observe here for the 
high step seems to come from the fact (already stressed above) that our calculations 
might be forced artificially by the outflow boundary condition. 

The local vorticity thickness 8, of the mixing layers is defined as follows: 

where (c),, and (a)-, are the extrema of the time-averaged streamwise velocity on 
the upper and lower sides of the mixing layer. The ratio h = s/6,, where s is the 
spanwise wavelength of the streamwise vortices (figure 7 c),  is in good agreement with 
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Bernal & Roshko’s (1986) observations. We find h = 0.7, against h = 0.8 in the 
experiment. As stressed by Bernal & Roshko (1986), this value is close to the value of 
f found for the most-amplified mode of the translative instability (global in-phase 
spanwise oscillation of the billows) by Pierrehumbert & Widnall(l982). It suggests that 
the translative instability of the Kelvin-Helmholtz billows selects the spanwise period 
of the hairpin vortices strained longitudinally. Notice that, in the simulation without 
the subgrid model, the spanwise spacing between the longitudinal vortices is much 
smaller (figure 6) than in the large-eddy simulation (figure 7 b) and Bernal & Roshko’s 
(1986) experiment. This is an argument in favour of the structure-function model. 

3.2.2. Low step 
The results of the high-resolution low-step case (run 3DFSc) are now presented. The 

visualization of the instantaneous flow field at t = 90H/ U, is shown on figure 10 (a, b) 
(plate 4). It displays the vorticity modulus 1 1 0 1 1  = 3.5U0/H (light blue); the streamwise 
vorticity o, = +2.5U0/H (dark blue) and w, = -2.5U0/H (green). A plane sheet of 
vorticity appears just downstream of the step (left-hand side of the figure) and breaks 
down into intense longitudinal vortices (w, w 60 % ue). These streamwise counter- 
rotating vortices are similar to those visualized in the laboratory experiments of Kiya 
(1989) and Bandyopadhyay (1991). Intense longitudinal vortices were also noticed in 
the recent large-eddy simulations by Friedrich & Arnal (1990) with a step geometry 
close to the present one, W / H  = 2. This illustrates the flow complexity in the re- 
attachment region, and explains the instantaneous fluctuations of the re-attachment 
length. These streamwise structures were also observed by Miiller & Gyr (1986) and 
can explain the rapid entrainment of fluid upward in the downstream region of dunes. 

A top view of the low-pressure field corresponding to figure 10(b) is shown in figure 
lO(c). It corresponds top’ = - 0 . 3 ~ ~  Uz. Three primary Kelvin-Helmholtz vortices are 
visible. The one closest to the step is almost cylindrical and is quasi-two-dimensional. 
The other two pressure tubes are strongly distorted in the spanwise direction. They are 
linked by two streamwise tubes, which seem to correspond to the secondary vortices 
shown previously in figure lO(b). However, it is not clear whether the vortex patterns 
shown on figure 10 are of the same type as for the high step (with a strong distorsion 
due to the lower wall), or if they are a helical-pairing type instability, as in the natural 
mixing-layer calculations of Comte et al. (1992). Notice also that the free-slip lateral 
boundary conditions used here might be responsible for the helical-pairing pattern. It 
is clear, as stressed above, that the width of the computational channel is smaller than 
in the experiments. New calculations in a larger channel should be undertaken in order 
to validate our predictions. However, the statistics of the flow shown below are 
encouraging, when compared with the experimental measurements. 

4. Turbulence statistics 

& Johnston’s (1980) experiment. 
In this section we focus on the low-step case corresponding to the geometry of Eaton 

4.1. Two-dimensional simulations 
First, the results of the two-dimensional numerical simulation (run 2DEUb) are 
presented. In this run, the dimensionless Navier-Stokes equations (taking rii = 0 and 
riT = 0 in (2.18) and (2.19)) are integrated from the initial condition u(x,O) = 0 and 
T(x,O) = 0 until a statistically steady state is reached. This equilibrium state is 
identified with the aid of the longitudinal velocity field, as illustrated by figures 11 (a) 
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FIGURE 1 1 .  Temporal evolution of the longitudinal velocity component u ;  run 2DEUb. 

(a) x / H  = 3,y/H = 1 ;  (b) x / H  = 12, y / H  = 1. 
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FIGURE 12. Transverse profile of the longitudinal mean velocity: straight line, run 2DEUb; 
dots, laboratory experiment of Eaton & Johnston (1980). (a) x / H  = 4, (b) x / H  = 6.  

and 1 1  (b). Figure 11 (a) presents a temporal evolution of the streamwise velocity at 
x / H  = 3 and y / H  = 1 (in the mixing layer). The steady state in this case is observed 
for t - 40H/Uo. Figure 11 (b) shows the streamwise velocity at x / H  = 12 and y / H  = 1, 
and in this case, the steady state is reached at t - 100H/Uo. Therefore, the evaluation 
of the flow statistics is started after the initial transient at t = 160H/U0 and pursued 
over a period of - 400H/U0. Time averages are denoted by angle brackets. 

The vertical profile of the mean streamwise velocity, ( u ) ,  is shown in figure 12 for 
two downstream positions, x / H  = 4 and 6. Comparison with the results of Eaton & 
Johnston (1980) shows disagreement in the recirculation region because the re- 
attachment length is underestimated in the calculation: x R / H  = 6.8 versus the 
experimental result, x R / H  = 7.8. 

The turbulent kinetic energy ( K )  = i(u; ul )  is calculated using 

(K) = :( (24’2) + (P)), (4.1) 
where u; is the velocity temporal fluctuation from the mean ( u i ) .  This equation results 
from the approximation for the unknown spanwise turbulent kinetic energy for a two- 



Coherent vortices behind a backward-facing step 15 

18 
(K>lG 

FIGURE 13. Transverse profile of the turbulent kinetic energy, same simulation as in figure 12. 
(a) x / H  = 4, (b) x / H  = 6. 

dimensional simulation, i.e. (w”) % ;((d2) + (d2)) .  Figure 13 shows the turbulent 
kinetic energy for the same downstream positions as in figure 12. The agreement with 
the experiment is qualitatively good, but the computed kinetic energy is significantly 
higher than the actual one. This is due to an excess of energy (in the two-dimensional 
calculation) in the v’ component, since no transfer to the spanwise component is 
possible. Similar behaviour is observed in the two-dimensional temporal mixing layer 
by Lesieur et al. (1988). 

4.2. Three-dimensional simulations 
We first present the results for the low-resolution case. Two subgrid models are 
compared : the structure-function model (run 3DFSb) and Smagorinsky’s (1 963) model 
(run 3DSMA). A calculation without any model (Euler simulation) is also given for 
comparison (run 3DEUb). 

Smagorinsky’s subgrid eddy viscosity is given by 

V t ( X ,  t )  = (C, d)2(2S,, S& ( 4 4  

where the constant C,, determined by Lilly (1967), is 0.2 for homogeneous isotropic 
turbulence. A ,  the mesh size, was previously defined. 

The frequency spectrum E,,(S) (S  = fH/ U, is the Strouhal number, and f the time 
frequency) related to the streamwise velocity at x / H =  12,y/H= 1 and in the 
symmetry plane of the channel is first presented in figure 14. This location is chosen far 
downstream of the re-attachment region, where the turbulence has had enough time to 
develop. The arrow corresponds to a Strouhal number of 0.08, corresponding to large 
coherent vortices, determined with the aid of higher-resolution calculations presented 
below. This value is close to the experimental value of 0.07 measured by Eaton & 
Johnston (1980). 

The two large-eddy simulations exhibit a rather small Sg range for frequencies 
higher than the frequency of the large coherent vortices, which might indicate a 
Kolmogorov cascade towards smaller scales. On the other hand, the Euler simulation 
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FIGURE 15. Transverse profile of the longitudinal mean velocity (i$ for two position x / H :  (a) 
x / H  = 8, (b) x / H  = 12. Small dots, Euler simulation; dashed line, large-eddy simulation 
(Smagorinsky's model); solid line, large-eddy simulation (structure-function model); large dots, 
laboratory experiment of Eaton & Johnston (1980); same runs as in figure 14. 

presents an accumulation of energy in the same frequency range. This result shows that 
the subgrid viscosity correctly models the kinetic energy flux through the cutoff 
frequency, as previously noted. 

Figure 15 shows the transverse profiles of the mean streamwise velocity. The three 
calculations are compared with the experimental results of Eaton & Johnston (1980). 
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FIGURE 16. Same calculation as in figure 15: transverse profile of the turbulent kinetic energy. 
(a) x / H  = 8, (b) x / H  = 12. 

The large-eddy simulation exhibits better results than the Euler simulation. However, 
comparison of the calculated velocity profiles with the laboratory experiment shows 
discrepancies in the wall region, Contrary to the two-dimensional calculation, the re- 
attachment length (in this low-resolution experiment) x R / H  - 10 is bigger than the 
experimental result. It seems that the three-dimensional effects increase this length. 
This poor prediction is attributed to the low resolution, which is insufficient to describe 
the mixing-layer dynamics that determine the velocity field and the re-attachment 
length. 

The mean total turbulent kinetic energy is evaluated at each point by a temporal 
integration and consists of two parts: a contribution ($6) corresponding to the 
fluctuations q' with respect to the time average (iQ of the instantaneous filtered field 
q on the one hand, and a subgrid kinetic energy K, on the other hand: 

where K, is calculated with the aid of (2.15). 
( K )  = !&<) + ( K J ,  

<&j) = <46) + (a), 

(4.3) 

The mean total Reynolds stresses (RiJ are also composed of two parts: 

(4.4) 
where (6%) is calculated explicitly, and the subgrid part, (G), is calculated 
with the aid of the subgrid model, (2.8), (2.13) and (2.15). 

Figures 16 and 17 show respectively the mean total turbulent kinetic energy and 
mean total Reynolds stresses. These three-dimensional simulations on a coarse grid 
(runs 3DEUb, 3DFSb and 3DSMA) show the influence of the subgrid model. 
Numerical simulation without a subgrid model is affected by the energy accumulation 
near the frequency cutoff. As a consequence, this simulation gives the poorest 
agreement with the experimental results. This indicates that some of the results given 
by numerical codes which rely on numerical diffusion to provide the necessary damping 
have to be considered with caution. The structure-function model gives better results 
than the Smagorinsky model, with C, = 0.2. 



18 

I 

A .  Silveira Neto, D .  Grand, 0. Me'tais and M .  Lesieur 

(4Q 
I 

I 
I 

I 

2.0 

1.5 

Y 
R 

1 .o 

0.5 

0 0.01 0 0.01 0.02 
- (Ruw)l  uo2 

FIGURE 17. Same calculation as in figure 15: transverse profile of the Reynolds stresses. 
(a) x / H  = 8, (b) x / H  = 12. 
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FIGURE 18. Transverse profile of the longitudinal mean velocity for five positions ( x / H ) :  (a) x / H  = 4, 
(b) 6, (c) 8, (d )  10, (e) 12. Dashed line, K--B modelling (run 2DKEP); solid line, large-eddy simulation 
(structure-function model, run 3DFSc); and dotted line, laboratory experiment of Eaton & Johnston 
(1980). 

A high-resolution simulation (run 3DFSc) was attempted with the first model in 
order to improve the comparison with experimental results. The flow dynamics of this 
simulation were described in $3, and we present hereafter the flow statistics. This 
calculation has also been compared to a classical K--E statistical model (Rodi 1982), 
implemented in the TRIO code (run 2DKEP). For the K--E run, we have determined an 
optimal minimal resolution in the same way it is usually done in practical industrial 
applications: a first calculation is performed with a very loose grid; the mesh is then 
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FIGURE 19. Determination of the boundary-layer re-attachment length x J H :  solid line, large-eddy 
simulation (structure-function model) ; dotted line, laboratory experiment (typical plot) of Eaton & 
Johnston (1980); same run as in figure 18. 

gradually refined until the results become independent of the grid resolution. The use 
of more computational points in the present K--E: computation would not modify the 
statistics. 

The transverse profiles of the mean streamwise velocity are shown in figure 18 for 
five positions x / H  at the symmetry plane of the channel. The agreement of the large- 
eddy simulation results with the experimental results is increased considerably. This is 
clearly demonstrated by comparison of figures 18 and 15 for two axial positions 
( x / H  = 8 and 12). The results of the large-eddy simulations are globally better than 
those of the K--E modelling. 

The next result is for the boundary-layer re-attachment length xR/H.  For an 
unstable flow, this quantity must be determined by a statistical treatment. We define 
the parameter T =  AtJAt, where At is the total time of integration and At> is the 
fraction of At for which the instantaneous streamwise velocity in the bottom wall is 
positive (a > 0). The boundary-layer re-attachment length is defined as the position 
x,/H, from the step, for which T = 50 %. Figure 19 shows r ( x / H )  for the large-eddy 
simulation (structure-function model), compared with Eaton & Johnston’s (1980) 
experiment. The results, including the K-s calculation result, are : 

Experiment (Eaton & Johnston, 1980) X,/H = 7.8 
Large-eddy simulation (fine grid) 
K-s model (grid independent result) 

X,/H = 8.1 
X,/H = 6.2. 

The wall pressure coefficient is defined as 

where po  is the pressure at the inlet channel, related to the velocity Uo. This coefficient 
is presented in figures 20(a) (opposite wall) and 20(b) (step wall). The results of the 
large-eddy simulation are in good agreement with the experiment. In contrast, the 
simulation with the K-s model gives a pressure recovery in a shorter distance from the 
step than the experiments. This leads to the underestimation of the re-circulation 
length. This trend was also observed by Avva, Kline & Ferziger (1988) in their K+ 
calculations. 
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FIGURE 20. Same calculation as in figure 18: wall pressure coefficient: (a) opposite wall 
and (b) step wall. 
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FIGURE 21. Same calculation as in figure 18: transverse profile of the turbulent kinetic energy. 
(a) x / H  = 4, (b) 6, (c) 8, ( d )  10, (e) 12. 

Figures 21 and 22 show the total turbulent kinetic energy ( ( K ) )  and the total 
Reynolds stresses ((&)). The agreement with the laboratory experiment was 
significantly improved with the coarse-grid simulation (figures 16 and 17). Close to the 
step, the position of the peak value agrees well with the experimental results. However, 
the differences between calculation and experiment are still large : close to separation, 
the characteristic scales of the instabilities are too small to be resolved explicitly. 
Similar trends have been noticed by other authors (see e.g. Friedrich & Arnal 1990). 
Furthermore, as pointed out by Friedrich & Arnal(1990), the turbulence measurements 
close to the step, extracted from various laboratory experiments with the same 
geometry, exhibit a significant scatter. Out of this region, the turbulent kinetic energy 
profiles computed with the aid of the structure-function model, agree well with the 
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FIGURE 22. Same calculation as in figure 18: transverse profile of the Reynolds stresses. 
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FIGURE 23. Total (solid line) and calculated (dashed line) Reynolds stresses; maxima for each 
transverse section: (a) run 3DFSb (coarse grid), (b) run 3DFSc (line grid). 

experiment (see figure 21) and fit the experimental uncertainty. In Eaton & Johnston's 
(1980) experiment, the Reynolds shear stress has been measured using a x -array hot- 
wire probe: as pointed out by the authors, the hot wires undermeasure the shear stress 
in the region of the peak and the measurements have to be interpreted with caution. 
Except for the region close to the step, compared to the experimental observations the 
structure-function model overestimates the shear stresses near the maximum (see figure 
22): this confirms Eaton & Johnston's warnings. The results of the K-e model show 
large discrepancies in the recirculation and wall regions. However, in the free stream 
and downstream of the re-attachment point, the predictions are better. 

The subgrid Reynolds stresses model is essential to the prediction of the total 
stresses. Figures 23 (a) and 23 (b) shows the total and explicitly calculated Reynolds 
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FIGURE 24. Frequency-spectra of the velocity fluctuations, large-eddy simulation (structure-function 
model), run 3DFSc: (a) x / H  = 6, (b) 10, (c) 12. Solid line, Euu; dotted line, Eve; dashed line, Euw. 

stresses for the coarse and fine grids (runs 3DFSb and 3DFSc). These figures display 
the maxima of the subgrid and the total Reynolds stresses for each vertical section of 
the channel as a function of the streamwise position. These maxima are located slightly 
upstream of the re-attachment region. This trend is in agreement with the laboratory 
experiment of Eaton & Johnston (1980). In the neighbourhood of the step, the ratio of 
the subgrid stresses to the total Reynolds stresses is approximately 50 YO for the coarse- 
grid case and 40% for the fine-grid case. This ratio decreases to nearly 30% in the 
outlet channel for the coarse grid, and to nearly 20% in the fine-grid case. This trend 
was also observed by Piomelli (1988) in a large-eddy simulation of a turbulent channel 
flow. We also observe that in both cases the Reynolds stress decreases downstream of 
the re-attachment region as a consequence of the action of the stabiliqation effects: 
curvature of the mixing layer, adverse pressure gradient and interaction bf the mixing 
layer with the wall, as observed by Bandyopadhyay (1991). 

Finally, the frequency spectra for the three velocity fluctuations q‘ are plotted in 
figure 24. They are calculated at sections x / H  = 6, 10 and 12, at y / H  = 1 and in the 
symmetry plane of the channel. As in figure 14, they show a trend towards a Si range. 
The energy in the smaller scales is evenly distributed among the three components, 
indicating a tendency towards isotropy. Indeed, this is a key point of both subgrid 
models (structure function and Smagorinsky’s). The energy distribution in the large 
scales is anisotropic, and the streamwise component is the most energetic. The spectral 
peak of the streamwise turbulent intensity E,,, for x / H  = 10 and 12, is found at a 
Strouhal number S = 0.08. As already stressed, this value is in very good agreement 
with Eaton & Johnston’s (1980) result, S = 0.07, at these streamwise positions. Several 
investigations of separated flows in various geometries have shown the presence of very 
low frequency associated with vortex shedding from the re-circulation bubble (Eaton 
& Johnston 1980; Arnal & Friedrich 1993). The length of the present time integration 
does not allow for these frequencies, good enough statistics to be obtained in order to 
address this issue. 
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5 .  Conclusions 
A transitional complex flow downstream of a backward-facing step was simulated 

numerically without and with a subgrid-scale model for two- and three-dimensional 
situations. The numerical diffusion due to the scheme allows calculations to be 
performed at a very high Reynolds number. These calculations have been compared 
with large-eddy simulations using both the structure-function model and Sma- 
gorinsky’s model. 

In the high-step two-dimensional simulation (no model), we have shown that the 
flow is very similar to a free mixing layer, with Kelvin-Helmholtz vortices of low 
pressure shed behind the step and undergoing various pairings. These eddies can either 
bounce on the lower boundary and be advected outside the channel, or be captured by 
the re-circulation region. In the low-step case, the separation behind the step is 
responsible for the detachment of the boundary layer at the upper wall. 

In the high-step three-dimensional case, we have shown that the coherent vortical 
structure of the flow is very close to a quasi-two-dimensionally forced mixing layer, 
with primary vortices shed behind the step, and secondary longitudinal hairpin vortices 
stretched in between. The primary vortices correspond to strong depressions. As in 
spatially growing mixing-layer experiments, the spanwise wavelength of the longi- 
tudinal vortices doubles at each pairing of the primary structures. The low-step large- 
eddy simulations using the structure-function model show dislocations in the vortices, 
as indicated by the low pressure field. The simulations predict a Strouhal number 
associated with the shedding in good agreement with experiments. Comparisons of 
statistical data with experiments show that the structure-function model behaves better 
than Smagorinsky’s and K-s models. 

One may argue about the poor resolution close to the wall, which requires a 
logarithmic law to be used. This assumption is of course questionable in the re- 
circulation zone. However, it does not seem to inhibit the re-circulation, and certainly 
has a weak effect upon free-shear instabilities developing just behind the step. 

For the highest resolution used here, the three-dimensional large-eddy simulations, 
which were performed in 1991, have consumed 60 hours of CRAY-2 CPU time. 
Higher-resolution simulations with mesh refinement in the wall vicinity should be 
undertaken on massively parallel computers. An increase in computer power should 
also permit testing of the effects on the flow development of various numerical 
parameters such as the nature of the lateral boundary conditions (free slip, periodic) 
and the channel width. More sophisticated outflow conditions could also be 
implemented (see e.g. Orlanski 1976). The inflow perturbations manipulation could 
allow bifurcation from one instability regime to another (from translative to helical 
instability for instance) and achieve an effective control of the turbulent structures. 
Furthermore, new laboratory experiments on the flow over a high step should be 
performed making use of sophisticated visualization and measurement techniques in 
order to scan the topology of the three-dimensional coherent vortices. 

Finally, an important result of the present study is that it has demonstrated the 
feasibility of large-eddy simulations for industrial modelling. 
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E. David. 
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